0800 7716262 | SP: 5099.1900 | CONTATO
 HOYA VIVINEX™ Toric

  • LIO em material hidrofóbico livre de glistening1,2
  • Desenho óptico asférico patenteado para uma melhor qualidade de imagem3
  • Processo de tratamento de oxigênio ativo, proporcionando uma superfície lisa, com borda quadrada para redução da PCO 2,4,6,7,8,9,10
  • Rotação média de 1.1° (intervalo: 0,0° -5.0°)
  • 100% das lentes (n=103) tiveram uma rotação ≤5° a partir do seu eixo inicial, durante todas as consultas pós operatórias, 1hora, 1 semana, 1 mês e 6 meses

Compartilhe

Referência:

1.Tandogan, T. et al. (2021): In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. In BMC Ophthalmol 21, 126.

2. HOYA data on file. DoF-CTM-21-002, HOYA Medical Singapore Pte. Ltd,

3. Pérez-Merino, P.; Marcos, S. (2018): Effect of intraocular lens decentration on image quality tested in a custom model eye. In: Journal of cataract and refractive surgery 44 (7), p. 889–896.

4. Leydolt, C. et al. (2020): Posterior capsule opacification with two hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. In: American journal of ophthalmology 217 (9), p. 224-231.

5. Giacinto, C. et al. (2019): Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. In: Journal of cataract and refractive surgery 45 (9), p. 1330–1334.

6. Werner, L. et al. (2019): Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. In: Journal of cataract and refractive surgery 45 (10), p. 1490–1497.

7. Nanavaty, M. et al. (2019): Edge profile of commercially available square-edged intraocular lenses: Part 2. In: Journal of cataract and refractive surgery 45 (6), p. 847–853.

8. Matsushima, H. et al. (2006): Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. In: Journal of cataract and refractive surgery 32 (6), p. 1035–1040.

9. Farukhi, A. et al. (2015): Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. In: Journal of cataract and refractive surgery 41 (5), p. 1081–1087.

10. Eldred, J. et al. (2019): An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. In: Investigative ophthalmology & visual science 60 (1), p. 113–122.

11. Schartmüller, D. et al. (2019):True rotational stability of a single-piece hydrophobic intraocular lens. In: The British journal of ophthalmology 103 (2), p. 186–190.

12. At IOL plane.

13. Based on an average pseudophakic human eye.