0800 7716262 | SP: 5099.1900 | CONTATO
 HOYA VIVINEX™ Impress™

Estabeleça um novo padrão em resultados visuais para seus pacientes de lentes monofocais

  • LIO em material hidrofóbico livre de glistening3,4
  • Desenho óptico asférico patenteado da Vivinex compensa parcialmente a aberração esférica da córnea e é mais tolerante as fontes de coma do que os desenhos asféricos padrões5
  • Tratamento com oxigênio ativo, proporcionando uma superfície lisa, com borda óptica quadrada para reduzir a opacidade de cápsula posterior – PCO 3,6,7,8,9,10,11,12
  • Superfície de alça texturizada e rugosa para reduzir o potencial de adesão à superfície óptica durante o implante e proporcionar melhor aderência ao saco capsular.

Compartilhe

Referência:

  1. HOYA data on file. CTM-23-P0105, HOYA Medical Singapore, Pte. Ltd, 2023
  2. HOYA data on file RnD-20-367, HOYA Medical Singapore, Pte. Ltd, 2023
  3. Tandogan, T. et al. (2021): In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. In BMC Ophthalmol 21, 126.
  4. Auffarth et al. (2023) Randomized multicenter trial to assess posterior capsule pacification and glistenings in two hydrophobic acrylic intraocular lenses. Sci Rep 13, 2822.
  5. Pérez-Merino, P.; Marcos, S. (2018): Effect of intraocular lens decentration on image quality tested in a custom model eye. In: Journal of cataract and refractive surgery 44 (7), p. 889-896.
  6. Leydolt, C. et al. (2020): Posterior capsule pacification with two hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. In: American journal of ophthalmology 217 (9), p. 224-231.
  7. Giacinto, C. et al. (2019): Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. In: Journal of cataract and refractive surgery 45 (9), p. 1330-1334.
  8. Werner, L. et al. (2019): Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. In: Journal of cataract and refractive surgery 45 (10), p. 1490-1497.
  9. Matsushima, H. et al. (2006): Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule pacification. In: Journal of cataract and refractive surgery 32 (6), p. 1035-1040.
  10. Farukhi, A. et al. (2015): Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. In: Journal of cataract and refractive surgery 41 (5), p. 1081-1087.
  11. Eldred, J. et al. (2019): An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. In: Investigative ophthalmology & visual science 60 (1), p. 113-122.
    Nanavaty, M. et al. (2019): Edge profile of commercially available square-edged intraocular lenses: Part 2. In: Journal of cataract and refractive surgery 45 (6), p. 847-853.
  12. HOYA data on file. DoF-SERT-102-MULT-03052018, HOYA Medical Singapore Pte. Ltd, 2018.
    Galor, A. er al. (2013). Management strategies to reduce risk of postoperative infections. In Current ophthalmology reports, 1(4), 10.1007/40135-013-0021-5.
  13. Bodnar, Z. et al. (2012). Toxic anterior segment syndrome: Update on the most common causes. In: Journal of cataract and refractive surgery, 38(11), 1902-1910.
  14. Jones, J. et al. (2016). The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery. In: Clinical ophthalmology (Auckland, N.Z.), 10, 1123-1129.
  15. Park, C. et al. (2018). Toxic anterior segment syndrome-an updated review. In: BMC ophthalmology, 18(1), 276.
    Chung, B. et al. (2018). Preloaded and non-preloaded intraocular lens delivery system and characteristics: human and porcine eyes trial. In: International journal of ophthalmology, 11(1), 6-11.
  16. Schmidbauer, J. et al. Rates and causes of intraoperative removal of foldable and rigid intraocular lenses: clinicopathological analysis of 100 cases. In: Journal of cataract and refractive surgery, 28(7), 1223-1228.